Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Med Mycol J ; 63(3): 59-64, 2022.
Article in English | MEDLINE | ID: covidwho-2198582

ABSTRACT

Acute invasive fungal rhinosinusitis is a rare infection primarily affecting patients with co-morbidities like immunosuppression and poorly controlled diabetes. Mucormycosis is increasingly being reported in patients with SARS-CoV-2 (COVID-19). However, reports of coinfection of aspergillosis and mucormycosis involving nose, paranasal sinuses, orbit, and brain are rare in literature. We aimed to evaluate the patient demographics, clinical presentation, and management of cases presenting with mixed infection. We carried out retrospective analysis of 12 patients with confirmed diagnosis of mixed invasive fungal infections post-COVID-19 disease out of 70 cases of COVID-19-associated mucormycosis (CAM) presenting to a tertiary-level hospital in North India from May to June 2021. All patients had diabetes mellitus; the mean age was 48 years. The common presenting features were headache, nasal congestion, palatal ulcer, and vision loss accompanied by facial pain and swelling. Two patients developed cerebral abscess during the course of treatment; three patients had concurrent COVID-19 pneumonia. All patients received systemic liposomal amphotericin B and serial surgical debridements. The overall mortality rate was 16.7%. Our study demonstrates that mucormycosis and aspergillosis are angioinvasive mycoses that are clinically and radiologically identical. KOH direct mount of clinical sample showing septate hyphae should be extensively searched for aseptate hyphae after digestion and clearing of the tissue. A high index of suspicion of mixed infection post-COVID-19 and early initiation of liposomal amphotericin B followed by prompt surgical intervention can reduce the overall morbidity and mortality among patients with this condition.


Subject(s)
Aspergillosis , COVID-19 , Coinfection , Invasive Fungal Infections , Mucormycosis , Sinusitis , Antifungal Agents/therapeutic use , Aspergillosis/microbiology , COVID-19/complications , Coinfection/complications , Coinfection/drug therapy , Coinfection/microbiology , Humans , Invasive Fungal Infections/drug therapy , Middle Aged , Mucormycosis/complications , Mucormycosis/diagnosis , Retrospective Studies , SARS-CoV-2 , Sinusitis/complications , Sinusitis/microbiology , Tertiary Care Centers
2.
Resonance ; 27(8):1387-1409, 2022.
Article in English | EuropePMC | ID: covidwho-1998633

ABSTRACT

Pressure swing adsorption (PSA) technology is used in medical oxygen concentrators for selective adsorption of nitrogen under pressure from air to produce oxygen-enriched air for breathing. The functional material in oxygen concentrators is aluminosilicate zeolite like Li-13X, 5A (LTA) with a relatively high Al-content. It selectively adsorbs nitrogen from the air into their molecular sieves due to the strong quadrupolar interaction between the adsorbed nitrogen and the electrical field of the charge balancing non-framework exchangeable cations of aluminosilicate zeolites. In an oxygen concentrator, two adsorbent vessels packed with the zeolite working alternately in a cyclic process are used for a near-continuous production of the oxygen-enriched air.

3.
Dent Res J (Isfahan) ; 19: 43, 2022.
Article in English | MEDLINE | ID: covidwho-1970496

ABSTRACT

Background: Over the past year, patients infected by severe acute respiratory syndrome coronavirus-2 presented with severe gustatory dysfunction, the prevalence of which varies among different populations. Furthermore, there have been sporadic reports of oral ulceration observed in coronavirus disease-19 (COVID-19) patients due to varied reasons. The aim of this study was to investigate and characterize the presence of gustatory disorders, oral ulceration, and other oral changes in patients with laboratory-confirmed COVID-19 infection. Materials and Methods: In this cross-sectional observational study, a total of 402 participants who were detected COVID-19 positive by reverse transcription-polymerase chain reaction were included. Their demographic and clinical data were recorded through hospital records. The participants were interviewed either in person or on the telephone to record any change in taste and/or changes within the oral cavity. t-test for independent means was used to compare mean age, while other characteristics were compared by Chi-square test and Z-score test. P < 0.05 was taken as significant. Results: Out of the total sample of 402 individuals, 262 were male and 140 were female. The prevalence of gustatory dysfunction and oral ulceration was 43.53% and 15.67%, respectively, in the studied sample. Significantly more females had gustatory dysfunction than males and older subjects more commonly than younger. The symptom of loss/change of taste and oral ulceration were more probable to occur together. In addition, the tongue was the most common site for ulceration in our studied sample. Conclusion: Loss of taste is a common symptom of COVID-19 patients, whereas oral ulceration is not so commonly reported. However, the presence of both these symptoms could impair the quality of life of patients and hamper adequate nutritional uptake.

4.
J Clin Virol ; 146: 105060, 2022 01.
Article in English | MEDLINE | ID: covidwho-1587311

ABSTRACT

Over 90% of the COVID-19 patients manifest mild/moderate symptoms or are asymptomatic. Although comorbidities and dysregulation of immune response have been implicated in severe COVID-19, the host factors that associate with asymptomatic or mild infections have not been characterized. We have collected serial samples from 23 hospitalized COVID-19 patients with mild symptoms and measured the kinetics of SARS-CoV-2 viral load in respiratory samples and markers of inflammation in serum samples. We monitored seroconversion during the acute phase of illness and quantitated the amount of total IgG against the receptor-binding domain of SARS-CoV-2 and estimated the virus neutralization potential of these antibodies. Viral load decreased by day 8 in all the patients but the detection of viral RNA in saliva samples did not correlate well with viral RNA detection in nasopharyngeal/oropharyngeal swab samples. 25% of the virus-positive patients had no detectable neutralizing antibodies in the serum and in other cases, the efficiency of antibodies to neutralize SARS-CoV-2 B1.1.7 strain was lower as compared to the circulating virus isolate. Decrease in viral load coincided with increase in neutralizing antibodies and interferon levels in serum. Most patients showed no increase in inflammatory cytokines such as IL-1ß or IL-6, however, elevated levels of IL-7 and other inflammatory mediators such as TNF-α and IL-8 was observed. These data suggest that most mild infections are associated with absence of inflammation coupled with an active innate immune response, T-cell activation and neutralizing antibodies.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity , SARS-CoV-2 , Viral Load
5.
BMC Med Genomics ; 14(1): 226, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1542114

ABSTRACT

BACKGROUND: Higher mortality of COVID-19 patients with lung disease is a formidable challenge for the health care system. Genetic association between COVID-19 and various lung disorders must be understood to comprehend the molecular basis of comorbidity and accelerate drug development. METHODS: Lungs tissue-specific neighborhood network of human targets of SARS-CoV-2 was constructed. This network was integrated with lung diseases to build a disease-gene and disease-disease association network. Network-based toolset was used to identify the overlapping disease modules and drug targets. The functional protein modules were identified using community detection algorithms and biological processes, and pathway enrichment analysis. RESULTS: In total, 141 lung diseases were linked to a neighborhood network of SARS-CoV-2 targets, and 59 lung diseases were found to be topologically overlapped with the COVID-19 module. Topological overlap with various lung disorders allows repurposing of drugs used for these disorders to hit the closely associated COVID-19 module. Further analysis showed that functional protein-protein interaction modules in the lungs, substantially hijacked by SARS-CoV-2, are connected to several lung disorders. FDA-approved targets in the hijacked protein modules were identified and that can be hit by exiting drugs to rescue these modules from virus possession. CONCLUSION: Lung diseases are clustered with COVID-19 in the same network vicinity, indicating the potential threat for patients with respiratory diseases after SARS-CoV-2 infection. Pathobiological similarities between lung diseases and COVID-19 and clinical evidence suggest that shared molecular features are the probable reason for comorbidity. Network-based drug repurposing approaches can be applied to improve the clinical conditions of COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , COVID-19/epidemiology , Drug Repositioning , Lung Diseases/epidemiology , Pandemics , SARS-CoV-2 , Algorithms , Antiviral Agents/therapeutic use , COVID-19/genetics , Comorbidity , Drug Discovery , Drug Repositioning/methods , Gene Regulatory Networks/drug effects , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Humans , Lung Diseases/drug therapy , Lung Diseases/genetics , Protein Interaction Maps/drug effects , Protein Interaction Maps/genetics , Systems Biology
6.
Front Microbiol ; 11: 618097, 2020.
Article in English | MEDLINE | ID: covidwho-1069731

ABSTRACT

SARS-CoV-2 antibody detection assays are crucial for gathering seroepidemiological information and monitoring the sustainability of antibody response against the virus. The SARS-CoV-2 Spike protein's receptor-binding domain (RBD) is a very specific target for anti-SARS-CoV-2 antibodies detection. Moreover, many neutralizing antibodies are mapped to this domain, linking antibody response to RBD with neutralizing potential. Detection of IgG antibodies, rather than IgM or total antibodies, against RBD is likely to play a larger role in understanding antibody-mediated protection and vaccine response. Here we describe a rapid and stable RBD-based IgG ELISA test obtained through extensive optimization of the assay components and conditions. The test showed a specificity of 99.79% (95% CI: 98.82-99.99%) in a panel of pre-pandemic samples (n = 470) from different groups, i.e., pregnancy, fever, HCV, HBV, and autoantibodies positive. Test sensitivity was evaluated using sera from SARS-CoV-2 RT-PCR positive individuals (n = 312) and found to be 53.33% (95% CI: 37.87-68.34%), 80.47% (95% CI: 72.53-86.94%), and 88.24% (95% CI: 82.05-92.88%) in panel 1 (days 0-13), panel 2 (days 14-20) and panel 3 (days 21-27), respectively. Higher sensitivity was achieved in symptomatic individuals and reached 92.14% (95% CI: 86.38-96.01%) for panel 3. Our test, with a shorter runtime, showed higher sensitivity than parallelly tested commercial ELISAs for SARS-CoV-2-IgG, i.e., Euroimmun and Zydus, even when equivocal results in the commercial ELISAs were considered positive. None of the tests, which are using different antigens, could detect anti-SARS-CoV-2 IgGs in 10.5% RT-PCR positive individuals by the fourth week, suggesting the lack of IgG response.

SELECTION OF CITATIONS
SEARCH DETAIL